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A general expression is obtained for the longitudinal dispersion coefficient for a 
passive contaminant in a varying channel. This expression reveals the upstream 
memory character of the dispersion coefficient. Simple examples are used to illustrate 
the effects of: a sudden change in breadth, centrifugally driven secondary flows, and 
changes in the depth profile. 

1. Introduction 
Although most flows in nature vary along their length, most theoretical work on 

longitudinal contaminant dispersion has concerned longitudinally uniform channels. 
Fischer (1969) pointed out that i t  is justifiable to  use such a uniform model only if 
the lengthscale for mixing across the channel is less than the lengthscale for channel 
variations. I n  practice, the diffusion lengthscale in natural streams is of the order 
of 100 channel breadths and can greatly exceed the bend-length. 

Fischer (1969) showed how the longitudinal dispersion coefficient could be computed 
for periodic bends. The effect of longitudinal non-uniformity can be quite marked. 
I n  a numerical model of a stretch of the Missouri River, Fischer found that the 
longitudinal dispersion coefficient was nearly a factor of 10 smaller than would have 
been the case of a longitudinally uniform channel. The qualitative explanation is that  
the effective current (averaged over a diffusion length-scale) can be much less strongly 
sheared than the current at each individual transect, and the shear-dispersion process 
is correspondingly weakened. 

The objective of the present work is to provide an analytic counterpart to Fischer’s 
(1969) computational scheme. A formula is obtained for the (positive) bend-averaged 
longitudinal dispersion coefficient. To utilize this formula it is mathematically 
convenient, and physically natural, to use the concept of a local shear-dispersion 
coefficient. This local value has an upstream memory over a diffusion lengthscale, 
and can be negative (as has been observed experimentally by Fukuoka & Sayre 1973). 
Simple examples are used to illustrate the behaviour both of the local and of the 
bend-averaged dispersion coefficients. 

2. Advection-diffusion equation 
For a channel that is much wider than it is deep, the timescale for cross-sectional 

mixing is much greater than that for vertical mixing. Thus, in a study of the even 
slower process of longitudinal dispersion, the contaminant can be regarded as being 
vertically well-mixed. Also, in the absence of abrupt features (such as stone jetties), 
the transverse lengthscales of the turbulence are much less than the channel width, 
so i t  is justifiable to use an eddy-diffusivity model for the transverse mixing. 
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FIGURE 1 .  Orthogonal curvilinear coordinate system for a meandering stream. 

Hence, as the starting-point of our mathematical analysis, we shall assume that 
the depth-averaged concentration c satisfies the advection-diffusion equation 

ha,c+hu*Vc-V*(hK.Vc)  = 0, 
with 

on the banks and 
h n . u  = hn.K.Vc = 0, 

V * ( h u )  = 0. 

(2.1 a )  

(2.1 b )  

(2.1 c )  

Here h is the water depth, u the depth-averaged flow velocity, K the horizontal 
dispersion tensor (i.e. turbulence plus any contribution from the vertical shear 
dispersion associated with secondary currents), V the horizontal gradient operator, 
and n the outward normal at the river banks. 

Relative to the horizontal length and advection velocity scales, the dispersion 
tensor K is numerically very small (i.e. K scales as the product of the water depth and 
the friction velocity). Thus advection is dominant along the flow, diffusion only being 
important across the flow. 

A technical difficulty for the mathematical analysis of any aspect of contaminant 
dispersion in natural waterways is that  the flow lines, and hence the contaminant, 
can wander back and forth across the principal channel direction. To deal with this, 
Fischer (1969) formulated his numerical method in terms of stream tubes. For studies 
of contaminant dispersion across rivers, the use of flow-following coordinates has been 
developed further by Yotsukura & Cobb (1972) and Yotsukura & Sayre (1976). 

With such a coordinate system (2, y)  aligned along and across the flow (see figure 
l ) ,  i t  is straightforward to identify the cross-stream component K~~ of the dispersion 
and to retain just the important features of the advection-diffusion equation (2.1) : 

(2.2a) 

with 
hu = hK22ayC = 0 (y = YR,YL), (2.2b) 

a,(m2 hu) = 0. (2.2c) 



~ o ~ i ~ u d i n a ~  dispersion coeflicients for varying channels 30 1 

Here ml(x, y), m2(x, y)  are metric coefficients and yR, yL denote the right and left 
channel sides (facing downstream). 

The unfamiliarity of calculations involving the metric coefficients is minimized by 
our making the requirement that the longitudinal distance increment m, is adjusted 
so that 

A = J:Im2hdy = r: m,m,hdy. (2.3) 

Thus the incremental volume between adjacent x-contours is the same as the 
conventional cross-sectional area A .  Also, it is convenient to include the m, factor 
in the definition of cross-sectional average values : 

1 YL f =  fm,m2hdy. 
YR 

For the longitudinal velocity the rate of crossing of x-contours is given by 

u, = u/ml. (2.51 

The cross-sectional average value is the same as the conventional definition of the 
bulk velocity, and conservation of volume flow along the channel can be expressed 
as Au, = constant. (2.6) 

3. Two lengthscales 
As the cross-sectionally averaged velocity @,(x) increases and decreases (i.e. as the 

channel narows and widens), the contaminant cloud will appear to undergo concertina- 
like deformations. To deal with this we introduce a moving coordinate system 

(3.la) 

7 = €2t ,  (3.1b) 

where U is any convenient reference velocity. Thus, in the ((,~)-coordinates, any 
evolution of the bulk concentration is associated with dispersion and not merely the 
non-uniform advection. The presence of the parameter E serves to indicate that the 
longitudinal lengthscale 6 of the contaminant cloud is to  be thought of as being much 
longer than the lengthscale x for mixing across the channel, with a correspondingly 
slow timescale T for the longitudinal dispersion. 

The channel topography does not move along with the (6 ,  ?)-coordinate system. 
Thus the comparatively small and rapidly changing variations in concentration 
across the flow (associated with the velocity and depth profiles) are best described 
in the stationary (x, y)-coordinates. The method of multiple scales (Nayfeh 1973, 
chap. 6) was developed to deal with precisely this type of situation. We regard c as 
a function of both 6 and x, and in the equation for c(x, y, 6 , ~ )  we retain both 6 and 
x-derivatives : 

U 
m, m2 u1 aXc - a, m, m2 h(u, - ul) a,c + e2ml m2 ha,c = 0. (3.2) 

In the solution procedure the decomposition between 6- and x-behaviour is organized 
so that on the short x-scale there is no systematic growth. 
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4. The shape of the function G 
Following Taylor (1953) or Fischer (1967, 1969), we assume that the timescale 

7 = E 2 t  upon which we are studying the dispersion process is sufficiently long that 
the contaminant is nearly uniformly distributed across the flow, and does not vary 
much on the scale of a single bend: 

c = c&, 7) + ec,(x, y, 5,7) + s2c,(x, y, 6,7) + . . . . (4.1) 

Also, without loss of generality, we can require that the correction terms el, c,, . . . give 
no net contribution to the concentration when integrated over the entire flow. 

From equation (3.2) it  follows that to a first approximation c1 satisfies the equation 

wit'h 

Here the angle brackets (. . . ) denote bend averaging : 

( 4 . 2 ~ )  

(4.2 6) 

( 4 . 2 ~ )  

(4.3) 

For periodic bends 2L is the bend length, while for non-periodic bends L has to be 
sufficiently large for the averages to become effectively independent of L. 

To solve (4.2) we introduce the auxiliary function G(x,  y) : 

with 

m, m2 hu, ax G- ay = m, m, h(u, - u,)/ul, (4.4u) 

(4.4b) 

(4.4c) 

We remark that by construction G(x,  y) is independent of the choice of the reference 
velocity U .  The particular normalization (4.4~) has been chosen because on integrating 
(4.4a) across the flow we find that 

a YL 
m, m, hu, G dy = 0. (4.5) iiG s,= 

On the right-hand side of ( 4 . 2 ~ )  the ageo factor can be regarded as remaining 
constant on the x-lengthscale. Thus, we can represent c1 as 

where the constant (bend-averaged) term has been included to ensure that el gives 
no net contribution to the concentration. From (4.6) we see that G(x, y)  gives the shape 
of the concentration profile across the flow. 

5. Longitudinal-dispersion equation 
The vital contribution of Taylor (1953) to the theory of contaminant dispersion 

was to recognize that, without the c1 correction term in the presentation (4.1), there 
is no shear dispersion, only the comparatively weak mechanism of longitudinal 



Longitudinal dispersion coeficients for varying channels 303 

diffusion. In  (2.2a) we have already neglected longitudinal diffusion. Thus the role 
of c1 is highlighted when we cross-sectionally and bend-average (3.2) to derive an 
evolution equation for c o :  

i.e. in the moving axes c,(g, T )  would remain fixed (independent of T )  if c1 were absent. 
Mathematically (5.1) can be recognized as a non-secularity condition which ensures 
that the solution for c2 has no systematic growth with respect to x. 

Substituting the result (4.6) into (5.1), we arrive at the longitudinal dispersion 
equation 

If we multiply (4.4~) by G(x, y)  and integrate across the flow, then we can derive the 

( A )  arco- Uz (AG)  ate, = 0. (5.2) 

identity 

(5 .3)  

On the right-hand side the first term is strictly positive, and the second term has zero 
average with respect to x. Thus, as we should expect, the diffusion coefficient in (5.2) 
is positive. 

For reasons which become apparent in the next section we choose to re-write 
equation (5.2) 

where the bend-averaged shear-dispersion coefficient D is given by 

( A3a; G) 
( A ) 3  ' 

D =  (5.5) 

We remark that for periodic bends a convenient choice for the reference velocity 
would be to make 

(5.6) ( A ) U  = A%,. 

6. Local shear-dispersion coefficient 

the form 
If we revert to the use of (z, t)-coordinates then the above results (4.1), (4.6) take 

(6.1) 
c = co+til(G-L)a,co+.... ( A n  

( A )  

Replacing c, by the local cross-sectionally averaged concentration c we have instead 
(Fischer 1967, equation (1  1 ) )  

c = F+a,(G-G)a,c+ ... . (6.2) 

Substituting this into ( 2 . 2 ~ )  and integrating across the flow, we arrive at the 
longitudinal dispersion equation 

A(& C +  ti1 a&) - i3,(AD,,, d,C) = 0,  

Dloc = - ( u ~ - ~ ~ ~ ) ( G - G ) ~ L ~  = i i :G 

(6.3) 

where the local shear-dispersion coefficient Bloc is given by 
- - 

(6.4) 

(Fischer 1976, equation (17)) 



304 R. Smith 

Starting from (6.4) and transferring to moving axes, we can rederive (5.4) with 

The concertina effect makes the contaminant cloud change its length, with the local 
value of aiF varying as ( A / ( A ) ) 2  (Smith 1977, equation (3c)). This preferential 
weighting in favour of the wider slower-moving regions is further compounded by 
an extra factor A / ( A )  to  allow for the extra time spent by the contaminant cloud 
in these regions. 

By virtue of the relationship (6.5) the local dispersion coefficient Dloc provides us 
with more information and insight to the dispersion process than does the averaged 
quantity D. Unfortunately, - the same cannot be said of the local equation (6.3). As 
can be seen from (5.3), if u1G2 varies rapidly along the flow, then there can be short 
sections of the channel in which Dloc is negative. Such local reductions in size of the 
contaminant cloud have been observed in laboratory experiments by Fukuoka & 
Sayre (1973). Alas, diffusion equations such as (6.3) become ill-conditioned when the 
diffusion coefficient is negative. To suppress the spurious instabilities i t  would be 
necessary to extend (6.2), (6.3) to  include higher-order corrections. Of course, the 
bend-averaged equation (5.4) is free of such difficulties. 

7. Eigenfunction expansions 
An intrinsic feature for varying channels is the memory character of the dispersion 

process (over a diffusion lengthscale). To accommodate this feature in the selection 
of discharge sites, Smith (1  982) introduced generalized eigenmodes for diffusion across 
the flow. Here it is shown how these functions can be used to  solve (4.4a-c) for the 
shape factor G and to  derive a general expression for the longitudinal-dispersion 
coefficient. 

We define eigenmodes going with and against the flow: 

(7 . la )  

(Smith 1982). These adjoint functions $k+)(x, y), $k-)(x, y) with their sharedeigenvalue 
,u,(x), permit us to  deal with varying flow geometries almost as if there was no 
x-dependence. The zero mode is $&+) = #&-) = 1, corresponding to  uniform concent- 
ration across the flow. 

Since the equation (4.4a) for G(x, y) involves an x-derivative in the flow direction, 
i t  is natural for us to  seek a solution in terms of the + modes: 
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To have a compatible representation for the right-hand-side term in (4.4a), we put 

m-..-- 
mim2h(41-~1) = mimzhu, X $ L - ) $ k + ) ( ~ , y ) ,  (7.3) 

n-1 

where, by virtue of the orthogonality of $k-) and $6+) = 1, we have 
- 

( q - u ) $ ( - )  n = ~ l $ n  - ( ). (7.4) 

The +L+) component of (4.4a) yields a first-order ordinary differential equation for 
Gn 

The resulting composite solution for G(x,  y )  is 

By hypothesis, the lengthscale over which the contaminant cloud has been evolving 
is well in excess of the diffusion lengthscale. That is why the integrals formally extend 
arbitrarily far upstream. 

The corresponding formula for the local shear-dispersion coefficient (6.4) is 

The upstream-memory character of this expression is in accord with Fukuoka & 
Sayre's ( 1973) experimental observation that the local dispersion coefficient lags 
behind the velocity shear. For uniform flows $7) = $7 and the dispersion coefficient 
is strictly positive. ~- Any negativeness of Dloc is necessarily associated with opposed 
signs of the $k+), $L-) factors, i.e. with pronounced changes in the flow. 

8. Long and short bends 
If the lengthscale l/pl for cross-sectional mixing is much less than the distance 

between the bends, then the u,aX terms are negligible in the eigenfunction equations 
( 7 . l a , b ) .  Thus we have $k+) = $k-), and the local dispersion coefficient (7.7) can be 
approximated as 

(8.1) 

Hence the bend-averaged dispersion coefficient (6.5) is dominated by regions of large 
A 2 / p n ,  i.e. regions of great width or of weak mixing across the flow where the 
shear-dispersion mechanism is locally very efficient. 

In  the opposite limit of short bends, i t  is the u,aX terms that dominate in the 
equations (7.1 a ,  b )  for the first few eigenfunctions. Thus, to a first approximation, $k+) 

( w ( x ) ) 2  
n=1 p n ( x )  . 

D l O C  = @1(4 x 

is independent of x : $k+' - ($',+'). 

Denoting the leading correction term as $k++', we have 
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Averaging this equation around the bends, we find that 

with precisely the same equation for ($k-)). Also, substituting for a,$h+) = a,$L+) 
into (7.1 e), we can evaluate the local eigenvalue 

Since the memory distance 1/pn extends over several bends, we find that the 
longitudinal-dispersion coefficient (7.7) varies as the square of the local bulk velocity : 

( 8 . 6 ~ )  

(8 .6b)  

I n  contrast with the long-bend result (8.1), the expression ( 8 . 6 ~ )  for Dloc involves 
the reciprocal of the averaged eigenvalue l / ( ,un) ,  and not the reciprocal of the local 
value 1 / p n .  Thus the dominant contributions arise where the cross-stream mixing 
is strong, i.e. regions of narrow width where the dispersion mechanism is inefficient. 
Hence, in accord with Fischer's (1969) numerical computations for a stretch of the 
Missouri River, short bends are associated with greatly reduced longitudinal-dispersion 
coefficients as compared with long bends. 

9. Self-similar depth profiles 
For straight channels the turbulent diffusivities for mass and for momentum scales 

as the product of the water depth h and the friction velocity u* (Elder 1959). If we 
model u* as being proportional to the local depth-averaged advection velocity u and 
we take the longitudinal pressure gradient to be constant across the flow, then i t  
follows that u varies as the square root of the local depth : 

a* h% 
u=- - , ?A*=-. (9.1 a, b )  

u hih 

hz hg 
The corresponding formula for the transverse turbulent diffusivity is 

with 
(9.2) 

here h and eT are averages without the usual depth weighting, and the numerical 
factor 0.15 is based upon the experiments of Sumer (1976). For later use we have 
introduced the notation K~ to  denote the turbulence contribution to  K ~ ~ .  

One class of flows for which the eigenfunction equations (7.1 a-e) are easy to solve, 
is when the geometry is self-similar at all transects : 

Self-similarity is not quite as restrictive as assuming that the channel is of constant 
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width, because in flow-following coordinates the actual width enters via the metric 
coefficient B 

(9.4a) 

YL-YR = 2Bo, (9.4b) 

m2 = B,' 
with 

3x2 = constant. (9 .44  

With the assumptions (9.1)-(9.3), the generalized eigenfunctions are the same as 
the conventional (straight-channel) cross-stream advection-diffusion modes 

(9.5) $ ( + I  = $(-) = $W( ), n Y  

and the x-dependence is relegated to the eigenvalue : 

with 

(9.6a) 

(9.6b) 

( 9 . 6 ~ )  

(9.6d) 

(9.6e) 

It is the small values of the ratios u*.u and h/B that make the diffusion lengthscale 
1/pl so much greater than the channel breadth. 

For this class of flows $7 = $&-I = $t) is constant, and therefore the local 
dispersion coefficient (7 .7)  is strictly positive : 

_ _ -  

(9.7) 

Downstream of a sudden change in flow conditions (velocity ratio UJU, depth- or 
widthscale), the multiplicative factor can be taken to be constant. Thus, the 
qualitative behaviour of Dloc depends upon the change in l /pn a, or equivalently upon 
the change in B3. If the breadth increases then the memory integral increases 
downstream. Hence, after the change in breadth, Dloc increases towards its asymptote. 
Figure 2 (a )  corresponds to a breadth increase, and figure 2 (b) to a combined depth 
and breadth increase. In  the opposite circumstance of a reduction in breadth, the 
memory integral decreases downstream. Thus, after the change in breadth, Dloc 
decreases towards its asymptote (figure 3a, b).  It is noteworthy that in the combined 
depth and breadth increase (figure 3b), there is a region of anomalously large 
longitudinal dispersion. Physically the strong velocity shear downstream of the 
change is acting upon the relatively large concentration variation c1 that was 
generated upstream of the constriction. 

A parabolic depth profile 
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(a)  Downstream asymptote 

FIUTJRE 2. Longitudinal-dispersion coefficient when there is a sudden 
increase in channel breadth. 

has the virtues of resembling many natural depth profiles and being analytically 
tractable. The normalized eigenfunctions are Gegenbauer polynomials : 

(9.9a) 

with A,, = $n(n+4), (9.9b) 

@)= 0 (nodd), (9.9c) 

(9.9d) 

(Gradshteyn & Ryzhik 1965, kjs7.31, 8.93). The results shown in figures 2(a ) ,  3(a) 
correspond to a factor-of-two breadth change with constant depth, while in figures 
2 ( b ) ,  3 (b )  the breadth and depth both change by the same factor two. In all cases 
the upstream conditions are taken to be the same. The rapid increase of A,  with 
modenumber means that the value of Dloc is dominated by the lowest even mode 
n = 2 .  

10. Curvature effects 
As well as pointing out the memory character of the longitudinal dispersion process, 

Fischer (1969) also demonstrated the importance of centrifugal effects as regards the 
transverse dispersion. The radial pressure gradient induces a secondary flow (outwards 
near the free surface, with a return current near the channel bed). Fischer (1969, 
equation (8)) shows that the contaminant flux associated with this transverse 
circulation is equivalent to increasing K~~ by an amount 

U 
30h3p2u - , 

u* 
(10.1) 
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- 
Upstream Asymptote 

D,, 

x- 

FIG~RE 3. Longitudinal-dispersion coefficient when there is a sudden 
decrease in channel breadth. 

where p ( x )  is the channel curvature (the reciprocal of the radius of curvature). 
Strictly, Fischer's result involves both the Darcy-Weisbach factor f and the von 
K6rmBn constant k. The stated result (10.1) corresponds to the parameter values 

f = 0.04, k = 0.4. (10.2) 

To retain the mathematical simplicity of the self-similar case, we shall model the 
effects of curvature as increasing the transverse-dispersion coefficient K~~ from its 

(10.3) 
turbulent value K~ to 

K22 = K T ( ~  +F(X)) .  

Comparing the average of the increment (10.1) with the empirical formula (9.2) leads 
us to define this curvature factor (Fischer number) 

F = 2 0 0 ( h p ) 2 ( z ) 2 .  
u* 

(10.4) 

Thus, if the velocity ratio U/u, remains constant, then (9.6e) gains a new factor 
1 + F ( x )  in the decay exponent - 

h(x) 
P n ( X )  = 0 . 1 5 h , ( l + F ( ~ ) ) ~ -  u* B(x)2' 

(10.5) 

To isolate the dependence of D upon curvature, we take B, h to be constant, and 

(10.6) 
p to vary sinusoidally : 

Evaluating the inner integral, we find that (7 .7)  now becomes 

P ( X )  = P sin2 Z X .  

where 
1B2u 

y=-  
KT 

(10.8) 

is the bend wavenumber relative to the diffusion lengthscale (cf. Fisher 1969, 
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equation (11,)) .  The averaging with respect to x can be performed explicitly 
(Gradshteyn & Ryzhik 1965, $3.937.2): 

where I,, is the associated Bessel function of order zero. 
In  the limit of small y (i.e. of long bends), we can replace sinyx by yx in the 

argument of the associated Bessel function, and we can use equation (6.611.4) of 
Gradshteyn & Ryzhik (1965) to obtain 

For channels of parabolic cross-section we can sum the series: 

for 

G2B2 
0.012 - 

hu, 
D =  [l+Pp 

y 4 A,  = 18. 

( 1 O . l O U )  

(10.10 b)  

(10.1Oc) 

In the opposite limit of short bends we can replace I,, by unity to derive the asymptote 

(1O.lla) 

(10.11 b)  

for y + A, = 18. (10.11c) 

For small P the two formulae agree. However, when the curvature effect is large 
the dispersion coefficient is significantly larger in the long-bend case (10.10). The 
reason for this is that where the curvature changes sign the mixing remains 
comparatively inefficient. The eventual reduction in D as P-t is a consequence of the 
diminishing size of this region in which curvature remains insignificant. For the 
short-bend case (10.11) it  is the averaged rate of mixing that matters (see (8 .6b) ) .  It 
is this averaging of 1 +Psin21x which gives rise to the l + @  factor in the 
denominator of ( 1 0 . 1 1 ~ ) .  

This difference in character between long- and short-bend results helps to explain 
why it has proved impossible to collapse field data for D onto a single empirical curve 
(Fukuoka & Sayre 1973). To date the best empirical formulae for the longitudinal- 
dispersion coefficient in natural streams would seem to be that of Fischer (1975), 
which can under- or overestimate D by as much as a factor of four. It is hoped that 
the present calculations might provide a theoretical basis for some new empirical 
formula for D. 
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11. Changes in depth profile 

velocity distribution we infer that  
If the y-coordinate is genuinely flow-following, then from the model (9.1 a )  for the 

(11 .1)  

where h,(y), B, are the reference depth profile and breadthscale at a location where 
m2 = 1 .  If in addition the diffusivity distribution is given by the model (9.2), and the 
channel is sufficiently straight that  we can set m, = 1 ,  then the field equation (7.la) 
for the eigenmode $(n+)(x, y )  can be written 

The resemblance to the self-similar case leads us to pose the representations (cf. 

( 1 1.3 a)  
Smith 1982, $6) 02 

#k+) = $ m y )  + x aL%W $g)(Y), 
m-1 

(1  1.3 b) 

p n  = pU‘nO’+pk. ( 1 1.3 c) 

The $$$ component of (1 1.2) yields coupled ordinary differential equations for the 
coefficients uL% : 

a, 

(11.4) 

m 

a x nm = - cpg) +pp) H,, + (pp - p m ) a n m  ( 0 )  (+) - x ( pjO)+p#) Hm,a~$+pkaL%. 
,=1 

(11.4b) 

Here the H,, terms are related to the departure from self-similarity of the depth 

(11.5) 

The corresponding equations for uL2, a&% have reversed x-derivatives but the same 
coefficients. The constraint (7.1 e )  upon the x-dependence of the upstream and 
downstream modes can be transformed into an equation for pk : 

00 m 

pk[i++(aL2+al;2)+ E u L G ~ L ~ ]  = 2 , ~ g ) f I n n +  X ( p . C ’ + p ~ ) ) H n m ( a L ~ + a ~ ~ )  
m-1 m-1 

W 

- x uL&uL&Lp-pg)) 
m-1 

(11.6) 

(We note that the equivalent equation (31) of Smith (1982) is in error, but has no 
effect upon the selection of optimal discharge sites.) 

A limiting case in which (11.4a,b) become analytically tractable is when the 
departure from self-similarity is moderately small. In  this case we can linearize 
(1 1.4a, 6) by the neglect of all mixed terms HijaLJ) ,  pkuk%. Also, from (1  1.6) we have 

(11.7) 
the linear approximation 

pk = 2p9 Hnn. 
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FIQURE 4. Depth profiles with the flatness parameter H,, = i ,  - t .  

The resulting explicit solutions for the coefficients ak?, ak2 are 

a(+) nn = a n n  (-) = 0, (1 1.813) 

nm a m n  J:a, exp (-JI, (pg)-p(no)) dx” Hn,(x’) (&)+p(no)) d d  

(n < m) (11 .8b)  
) 

1 

a ( + )  = - (-) = - 

Jxm exp (-l:’(,!&)-p(nD)) dz” Hnm(z ’ )  (pg)+pg)) dz‘ 

(n < m).  (11.8~) 

Substituting the representations (11.313, b )  into the general expression (7.7) and 

a(-) = -a(+) = - 
nm mn 

then neglecting quadratic terms a$% &I, we have the linear approximation 

w -  X 

Dloc = a ( ~ ) ~  x (q5g))2 5 dz’ exp (-I:pC)(z’’) dz”)/a(z’) 
n-1 --co 5 

w w  + ti2 x x @ q5g) { ak% Jz dz’ exp ( - J ,  p‘,o)(x”) dz”)/a(r’) 
n-i m-1 - W  

(11.9) 

Since the ak%, aL2 coefficients can depend upon Hnm downstream of x (see (1 1.8c)), 
it is by no means obvious that Dloc is causal. Yet the definition (6.4) of Dloc in terms 
of the shape factor G is clearly causal. This superficial difficulty can be resolved if 
we use the explicit solutions (11.8b, c )  for azA, The downstream terms all cancel 
and we are left with the causal expression 
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FIGURE 5. The change in dispersion coefficient when the flatness 
parameter jumps from ff,, = 0 to H,, = t .  

with 

I , ,  = exp ( - J:,p#(x") dx") J:m dx" exp ( - Jz:pg)(Z) X de)/@(x") 

+ exp ( - J:, pp)(x") dz" ) j:m dx"exp( -JJ:p#(i)d!i @(x"). (11.10b) 

For a symmetric reference depth profile the odd $9 coefficients are zero (see ( 9 . 9 ~ ) ) .  
Thus the leading correction to the self-similar result (9.7) for Dloc arises at H,,. From 
(1 1.5 b )  we can infer that H,, is positive or negative accordingly as the depth profile 
is flatter-bottomed or steeper than the'reference profile. Figure 4 shows two profiles 
with H,, = 0.2, -0.2. Slight asymmetry does not effect H,,, as a consequence of the 
symmetry of the product av $Lo) av $1p). 

In contrast with the spectacular change in Dloc associated with changes in breadth 
(see figures 2, 3), the response to a profile change is quite gradual. For example, if 
H,, suddenly increases from being zero at x = 0, then the resulting change to Dloc 
is given by the expression 

Thus the response is equally divided between the two lengthscales l/pLo) and l/pio) 
of the lowest symmetric modes (see figure 5 ) .  

For sinusoidally changing depth profiles 

H,, = A,, sin 12, (1  1.12) 

with all the other flow parameters constant, the oscillatory component of Dloc is given 
by 

with y = 1B2@/aT. (1 1.13 b) 
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Thus, for long bends with y < A,, the longitudinal dispersion coefficient is almost in 
phase with the depth profile (both vary as sinlx). However, for short bends with 
y > A,, the upstream memory of the dispersion coeficient is epitomized by the fact 
that Dloc is nearly out of phase with the changing depth profile (i.e. cos lx as opposed 
to sin lx). 

I wish to thank British Petroleum and the Royal Society for financial support. 
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